BÖLÜM 2. PERİYODİK ÇİZELGE ve BAZI ATOM ÖZELLİKLERİ
BÖLÜM 2. PERİYODİK ÇİZELGE ve BAZI ATOM ÖZELLİKLERİ
Periyodik tablonun tamamı temelde elementlerin elektron dağılımıdır. Elementlerin atom yarı çapları, iyonlaşma enerjileri ve elektron ilgileri gibi bazı özellikleri tabloda göz önünde tutulmuştur.
Elementlerin artan atom kütlelerine (atom numaraları) göre sıralandıklarında bazı özellikler periyodik olarak tekrarlanmaktadır.
Periyodik özelliklerinden biri; bir elementin atom kütlesinin katı haldeki yoğunluğuna bölünmesiyle elde edilen atom hacimleridir. Buna mol hacmi denir. Avogadro sayısı kadar atomun kapsadığı hacimdir.
Atom (mol ) hacmi (cm3/mol ) = mol kütlesi ( g/mol ) ´ 1/d (cm3/g )
Periyodik çizelge, benzer özellikteki elementleri gruplar halinde bir araya getiren, elementlerin çizelge halinde düzenlenmesidir. Benzer elementler düşey gruplar içine düşmekte ve özellikler yukarıdan aşağıya doğru düzenli olarak değişmektedir.
Alkali metaller (I.A grubu) yüksek mol hacimlerine sahip ve aşağıya inildikçe azalan düşük erime noktalarına sahiptir. +1 yükseltgenme basamağında olup NaCl, KCl, Csl, Li2O v.s. iyonik bileşikler oluştururlar. Bir atomun bileşiklerinde verdiği yada aldığı elektron sayısına yükseltgenme basamağı denir.
Wiliam Ramsey soygazları bulmuştur ve 0’ıncı grup denmiştir. Bu grup halojen elementleri (grup VII A ) ile alkali metaller arasında yer almaktadır.
İlk periyot sadece iki elementten oluşur; hidrojen ve helyum. Sonraki iki periyot sekiz elementli; dördüncü ve beşinci periyotlar on sekizer element; altıncı periyot otuz iki üyeli olup bunun on dört üyesi altta yerleştirilmiştir ve (z=57) Lantanitler denir. Yedinci periyodun on dört üyesi altta ve aktinitler olarak adlandırılır.
Her grupta elektron dağılımında benzerlik vardır.
1 A grubu (Alkali metaller): s orbitalinde tek değerlik elektronuna sahiptir; yani ns1
7 A grubu (Halojenler): 7 değerlik elektronuna sahiptir ve elektron dağılımı s2p5 dır.
8 A grubu (Soy gazlar): helyum (2 elektronlu) dışındakiler hariç en dış tabakalarında 8 elektron bulundururlar (s2p6 )
s bloğu : 1A ve 2A gruplarını kapsar.
p bloğu : 3A, 4A, 5A, 6a, 7a ve 8A
d bloğu : 3B, 4B, 5B, 6B, 7B, 8B, 1B, 2B
f bloğu : lantanitler ve aktinitler
s ve p bloğu elementlerine baş grup elementleri, d ve f bloğu elementlerine geçiş elementleri denir. f bloğuna iç geçiş elementleri de denir. Bütün B grubu, geçiş elementleridir sadece 1B ve 2B gruplarında grup numarası en dış kabuktaki elektron sayısını verir.
Bir elementin özelliklerini değerlik elektronlarının dağılımı belirler. Bir elektron kabuğunun baş kuantum sayısı büyüdükçe çekirdekten çok daha uzaklarda önemli ölçüde elektron yoğunluğu görülür. Bu nedenle, elektron kabukları çoğaldıkça atomun daha büyük olmasını bekleriz. Bir grupta periyot numarası büyüdükçe atom çapı büyür. Büyük atom numaralı elementlerde d ve f orbitallerinin perdeleme etkisi s ve p elektronlarının dış kabuk elektronlarını perdeleme etkisinden daha az olduğu için, en dış kabuktaki elektronlar çekirdeğe beklenenden daha yakın konumda bulunurlar. Genel olarak, daha çok elektron kabuğu bulunan atomlar daha büyük atomlardır. Atom yarıçapları elementlerin bir grubu içinde yukarıdan aşağıya doğru artar. Periyot boyunca soldan sağa doğru atom yarıçapları genel olarak azalmaktadır. ancak buna geçiş elementleri uymaz. Atom yarı çapları metaller için metallik yarıçap, ametaller için kovalent yarıçap olarak alınmıştır.
Tablo 2.2 Periyodik Çizelgedeki Atom Özellikleri Değişimi
Bir metal atomu pozitif bir iyon oluşturmak üzere bir yada daha çok elektron kaybettiğinde, çekirdekteki yük miktarı elektron sayısından daha fazla olur. Çekirdek, elektronları daha yakına çeker ve sonuç olarak, katyonlar kendini oluşturan atomlardan daha küçüktürler. Anyonlar kendilerini oluşturan atomlardan daha büyüktür. Eş elektronlu anyonlar için iyon yükü artıkça iyon yarıçapı artar. Bir ametal negatif iyon (anyon) oluşturmak üzere bir yada daha çok elektron aldığında çekirdek yükü sabit kalırken, fazla elektron nedeniyle etkin çekirdek yükü (çekirdeğin gerçek yükü ile elektronlar tarafından perdelenen yük arasındaki fark) değeri azalır. Elektronlar arasındaki itme etkisi artar, daha çok dağılır ve atom büyüklükleri artar.
Bir atom elektronlarını ne kadar kolay kaybederse, metal özelliği o kadar fazladır. İyonlaşma enerjisi (I), gaz halindeki atomlardan bir elektronu uzaklaştırmak için gerekli enerji miktarıdır. İyonlaşma enerjisi bireysel elektronlar için elektron volt (eV) cinsinden veya elektron bir mol elektron için mol başına düşen kJ cinsinden verilir. 1 elektron volt; vakumda potansiyel farkı 1 volt olan bir bölgeden geçen bir elektron tarafından kazanılan kinetik enerjidir. (1 eV = 1,6022´10-19 J = 96,487 kJ/mol ) İyonlaşma enerjisi arttıkça elektronun uzaklaştırılması gittikçe zorlaşır. Atom yarıçapı artıkça iyonlaşma enerjileri azalır. Periyodik çizelgede bir grupta yukarıdan aşağıya gidildikçe atomların elektron kaybetmeleri daha kolay olur; metallik karakter artar.
1A ve 2A grubu metallerinin indirgenme yetenekleri vardır. İndirgen madde elektron kaybederek kendisi yükseltgenir. 7a grubu (halojenler) elementlerinin yükseltgenme yetenekleri vardır. Yükseltgen bir madde yükseltgenme yarı tepkimesinde kaybedilen elektronları alır. Elektron alarak yükseltgenme yapan maddenin kendisi indirgenir.
2.1 Formül Tanımları ve Hesapları
Yapı Formülü ; Bir moleküldeki atomların hangi bağ türleriyle ve hangi atomların birbirine bağlandığını gösterir. Molekül Formülü; bir bileşiğin molekülünü oluşturan atomların gerçek sayılarını gösterir. Mol olarak en basit tam sayı oranı basit formülü (empirik formülü) verir. Eğer bir bileşiğin molekül ağırlığı biliniyorsa basit formülden bileşiğin molekül formülü türetilebilir. Molekül formülü bileşiğin gerçek formülüdür. Bir bileşiğin yüzde bileşimi, bileşiğin formülünden kolaylıkla hesaplanır. Asetik asit için;
Kaba (empirik) formül : CH2O
Molekül formül : C2H4O2
Yapı formülü :
Yakma analizinden de bileşiğin formülü bulunabilir. Yakma analizinde belli ağırlıkta bileşik örneği, oksijen gazı akımında yakılır. Yanma sırasında oluşan su buharı ve karbondioksit gazı uygun bileşikler tarafından tutulur. Bu tutucuların artan ağırlıkları su ve karbondioksitin kütlesini verir. Örnekteki bütün karbon atomları karbondioksit haline, hidrojen atomları da suya dönüşür.
2.2 Deneysel Formül Tayini:
1. 1. Elementlerin verilen miktarları veya ağırlık yüzdeleri atom ağırlığına bölünür.
2. 2. Çıkan sayıların en küçük ortak katı alınır.
3. 3. Bu sayılar tam sayılar değil ise uygun sayılarla çarpılarak tam sayılar haline getirilir ve taslak formülde yerine konularak deneysel formül bulunur.
4. 4. Deneysel formülün molekül ağırlığı ile verilen molekül ağırlığı kıyaslanarak bileşiğin molekül formülü bulunur.